

Via Franchetti, 4 – 37138 Verona – Tel. 045 572697 – E-Mail: info@poroton.it

Verona, 07/02/2023

RAPPORTO DI CALCOLO

Richiedente: SIAI S.r.I.

Via Patini, 7 - 64026 Roseto degli Abruzzi (TE) - Stabilimento di produzione: Petacciato (CB)

Oggetto: Determinazione delle caratteristiche termiche dinamiche e stazionarie, e verifiche igrometriche di una

struttura verticale opaca realizzata con blocchi denominati "POROTON® P800 BIO 45x30x19",

spessore muratura 30 cm

Rapporto N.: 2302-M0S008 Codice Prodotto 800-453019

RIFERIMENTI NORMATIVI

UNI EN ISO 13786 "Prestazione termica dei componenti per edilizia – Caratteristiche termiche dinamiche – Metodi di calcolo"

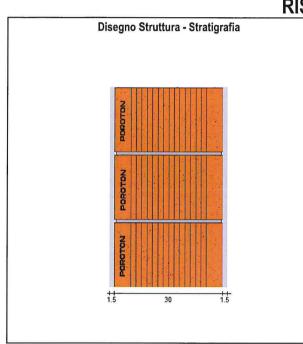
- UNI EN ISO 6946 "Componenti ed elementi per edilizia Resistenza termica e trasmittanza termica Metodi di calcolo"
- UNI EN 1745 "Muratura e prodotti per muratura Metodi per determinare le proprietà termiche"
- UNI EN ISO 10456 "Materiali e prodotti per edilizia Proprietà igrometriche Valori tabulati di progetto e procedimenti per la determinazione dei valori termici dichiarati e di progetto"
- UNI EN 13788 "Prestazione igrometrica dei componenti e degli elementi per edilizia Temperatura superficiale interna per evitare l'umidità superficiale critica e la condensazione interstiziale – Metodi di calcolo"
- UNI 10349-1 "Riscaldamento e raffrescamento degli edifici Dati climatici Parte 1: Medie mensili per la valutazione della prestazione termoenergetica dell'edificio e metodi per ripartire l'irradianza solare nella frazione diretta e diffusa e per calcolare l'irradianza solare su di una superficie inclinata"
- D.M. 26/06/2015 "Applicazione delle metodologie di calcolo delle prestazioni energetiche e definizione delle prescrizioni e dei requisiti minimi degli edifici"

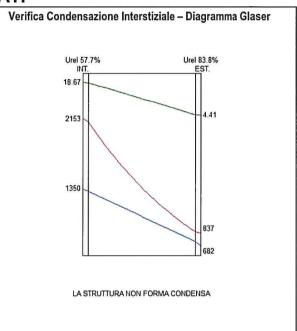
METODO DI CALCOLO

- I calcoli sono stati eseguiti utilizzando valori di conduttività termica dei materiali allo stato asciutto.
- Il calcolo delle caratteristiche termiche dinamiche è stato eseguito in base alla UNI EN ISO 13786 considerando un periodo di variazione termica pari a 24 ore.
- La resistenza termica calcolata è quella corrispondente al "limite inferiore", come definito nel paragrafo 6.7.2.4 della norma UNI EN ISO 6946. In particolare, per la muratura si è tenuto conto della presenza della malta di allettamento fra i corsi di elementi (e tra elemento ed elemento), considerando una conduttività termica equivalente, e quindi una resistenza termica equivalente. Il calcolo della resistenza termica complessiva della parete stratificata è stato quindi eseguito sommando le resistenze termiche dei diversi strati.
- I valori di capacità termica specifica (calore specifico "cp") ed i valori del fattore di resistenza al vapore d'acqua "μ" (e quindi della permeabilità al vapore "δ") sono stati dedotti dalla UNI EN ISO 10456 ed UNI EN 1745.
- Le verifiche igrometriche (verifica condensazione interstiziale e verifica del rischio muffa) sono state condotte in conformità alla UNI EN 13788, considerando come riferimento i dati climatici della UNI 10349-1 per la località "MILANO" (Zona Climatica E).

Rapporto N. 2302-M0S008 Pagina 1/2

Via Franchetti, 4 – 37138 Verona – Tel. 045 572697 – E-Mail: info@poroton.it


CARATTERISTICHE TERMOIGROMETRICHE E GEOMETRICHE DELLA STRUTTURA VERTICALE OPACA


Elemento costruttivo	Cond. [λ]	C. Spec.	Massa Vol.	ð·10-12	Spess.
(descrizione)	(W/mK)	(J/kgK)	(kg/m³)	(kg/msPa)	(cm)
Intonaco Interno	0.530	1000	1500.0	18.0	1.50
Muratura POROTON® P800 BIO 45x30x19 (*)	0.223	1000	880.0	20.0	30.00
Intonaco esterno	0.820	1000	1800.0	10.0	1.50
Spessore Totale Struttura (cm)					33.00

Resist. Superf. Interna [Rsi] (m²K/W): 0.13 - Resist. Superf. Esterna [Rse] (m²K/W): 0.04

(*) Muratura comprensiva di giunti orizzontali e verticali di malta di spessore 7 mm, interruzione 2 cm Caratteristiche malta ed intonaci secondo UNI EN 1745, Prospetto A.12: malta con massa volumica=1800 kg/m³, conduttività λ= 0,82 W/mK

RISULTATI

VALORI IN REGIME STAZIONARIO						
Massa totale [Mtot]	313.5	kg/m²				
Massa superficiale [Ms]	264.0	kg/m²				
Resistenza termica totale [Rtot]	1.562	m²K/W				
Conduttanza [C]	0.718	W/m²K				
Trasmittanza [U]	0.640	W/m²K				

VALORI IN REGIME VARIABILE (periodo 24 ore)						
Fattore di attenuazione [fa]	0.176	adim.				
Sfasamento [S]	13.24	ore				
Trasmittanza termica periodica [Yie]	0.113	W/m²K				

VERIFICA RISCHIO MUFFA							
Località: Milano (Zona Climatica E)	Mese critico Gennaio	f _{Rsi,lim} 0.676	f _{Rsi} struttura 0.917	T muffa (°C) 14.8			
Esito verifica:	Centialo	NESSUN RISCHIO MUFFA					

Rapporto N. 2302-M0S008 Pagina 2/2